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Abstract
We have determined the zeros of the partition functions of the anisotropic
Ising models on square, triangular and honeycomb lattices in the absence of a
magnetic field, with arbitrary combinations of interactions. It is found that the
zeros are generally distributed over areas. However, the zeros near the positive
real axis are distributed on the unit circle in a complex plane, with the zero
density g(θ) ∼ |θ |, which leads to logarithmic singularity of the free energy.
Our results generalize Fisher’s results for isotropic cases.

PACS numbers: 05.50.+q, 75.40.Cx, 75.10.Hk, 64.60.Cn

1. Introduction

In 1952, Yang and Lee [1] proposed a general theory of phase transitions. They observed that
the grand partition function of a real gas with a hard core in a finite volume is a polynomial in
fugacity. They introduced the complex-fugacity zeros and showed that in the thermodynamic
limit if the zero distribution approaches the positive real axis, a phase transition arises. They
further applied their theory to an Ising ferromagnet and proved the famous circle theorem,
which states that the zeros are distributed on the unit circle in the complex-activity plane [2,3].

In 1964, Fisher [4] observed that the partition function of an Ising model without a magnetic
field may be written as a polynomial in a variable that is a function of temperature. He
introduced the complex-temperature zeros and showed that the zeros are located on circles
for a square lattice [5] and that the logarithmic singularity is solely determined by the zero
distribution near the positive real axis. Itzykson et al [6, 7] further considered cases with a
magnetic field where the partition function may be expressed as a polynomial in two variables.
In addition to the Ising model, the complex-temperature zeros of the Potts model have been
studied [8].
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Some researchers [9–11] have considered the zeros of the partition functions of the two-
dimensional anisotropic Ising models in the absence of a magnetic field, with the interaction
strengths J1:J2 = integer:integer (square lattice) and J1:J2:J3 = integer:integer:integer
(triangular lattice), where the partition function may be expressed as a polynomial in a
variable that is a function of temperature. In this paper, we will consider cases with arbitrary
combinations of interaction strengths where the partition function may be expressed as a
polynomial in two variables, w1 and w2 (square), or three variables, w1, w2 and w3 (triangular
or honeycomb). The zeros are determined.

This paper is organized as follows. In sections 2–4, the zeros of the square, triangular and
honeycomb lattices are derived, respectively. In section 5, a summary is given.

2. Square lattice

From Kaufman’s exact solution [12], we obtain the partition function on a very large lattice:

ZS
N = 2M1M2

M1∏
n1=1

M2/2∏
n2=1

(C1C2 − S1 cos φ1 − S2 cos φ2) (1)

where Ci = cosh 2Ki , Si = sinh 2Ki , φi = 2πni/Mi and N = M1M2 is the total number of
lattice points.

In the thermodynamic limit, the free energy per site is given by

f/kBT = − ln 2− 1

8π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln(C1C2−S1 cos φ1−S2 cos φ2).(2)

Let us determine the zeros α(n1, n2) of the partition function polynomial in the variable w1:

C2

√
1 + η2 − η cos φ1 − S2 cos φ2 = 0. (3)

Thus,

η(n1, n2) = (α−1 − α)/2 = 1

S2
2 + sin2 φ1

[
S2 cos φ1 cos φ2

± i
√

(sin2 φ1 + sin2 φ2)S
2
2 + S4

2 sin2 φ2 + sin2 φ1

]
≡ reiθ (4)

where

r(n1, n2) =
√

1 + S2
2 sin2 φ2

S2
2 + sin2 φ1

(5)

and

θ(n1, n2) = cos−1 S2 cos φ1 cos φ2

r(S2
2 + sin2 φ1)

. (6)

Here wi = exp(−2Ki).
Since equation (4) contains two variables φ1 and φ2, we see that the zeros are located in

areas, as shown in figure 1. Here S2 = 2. The zero distribution approaches the real axis, giving
S1c = ±1/2, which correspond to a ferromagnetic phase transition of the ferromagnetic Ising
model withJ1:J2 = ln(1/2+

√
5/2): ln(2+

√
5), J1 > 0, J2 > 0, withTc = 2J2/[kB ln(2+

√
5)],

and an antiferromagnetic phase transition of the antiferromagnetic Ising model with |J1|:J2 =
ln(1/2 +

√
5/2): ln(2 +

√
5), J1 < 0, J2 > 0, with Tc = 2J2/[kB ln(2 +

√
5], respectively.
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Figure 1. The square-lattice zeros are distributed in the shaded areas in the η-plane. Here S2 = 2.

Using the zero distribution, we obtain

f/kBT = D − 1

8π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln(sinh2 2K1 − 2r sinh 2K1 cos θ + r2)

= D − 1

8π2

∫ ∫
dr dθ g(r, θ) ln(sinh2 2K1 − 2r sinh 2K1 cos θ + r2) (7)

where

D = − ln 2 − 1

8π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln[(C2

2 − cos2 φ1)/(C1C2 + S1 cos φ1 + S2 cos φ2)] (8)

and

g(r, θ) =
∣∣∣∣∂(φ1, φ2)

∂(r, θ)

∣∣∣∣ . (9)

Let us consider the ferromagnetic case J1 > 0, J2 > 0. φ1 = φ2 = 0 corresponds to a
ferromagnetic critical point. Expanding the integrand in equation (7) around φ1 = φ2 = 0 and
retaining the largest terms, we obtain the singular part of the free energy:

fs ∼
∫ φ10

0

∫ φ20

0
dφ1 dφ2 ln[(S1S2 − 1)2 + !(φ1, φ2)] (10)

where φ10 and φ20 are small numbers and

!(φ1, φ2) = (S1 + S2)(S1φ
2
1 + S2φ

2
2). (11)

Define
√

(S1 + S2)S1φ1 = θ cos χ and
√

(S1 + S2)S2φ2 = θ sin χ (θ � 0). Equation (10)
becomes

fs ∼
∫ θ0

0

∫ χ0

0
θ ln[(S1S2 − 1)2 + θ2] dχ dθ

∼
∫ θ0

0
θ ln[(S1S2 − 1)2 + θ2] dθ

∼
∫ θ0

−θ0

|θ | ln[(S1S2 − 1) + iθ ] dθ (12)
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where θ0 = √
!(φ10, φ20) and χ0 = tan−1

√
S2φ

2
20/S1cφ

2
10. As T → Tc, we have

(S1S2 − 1) ∼ t and hence fs ∼ t2 ln |t |.
We find that near the positive real axis, the zeros are located on the unit circle in the

X-plane, with the zero density g(θ) ∼ |θ |, which gives the logarithmic singularity. Here
X = ηS2.

We obtain a similar conclusion for the antiferromagnetic case, with X = sgn(J1)η|S2|.

3. Triangular lattice

The partition function on a large triangular lattice is given by

(ZT
N)2 = 22M1M2

M1∏
n1=1

M2∏
n2=1

[C1C2C3 + S1S2S3 − S1 cos φ1 − S2 cos φ2 − S3 cos(φ1 + φ2)] (13)

where Ci = cosh 2Ki , Si = sinh 2Ki , φi = 2πni/Mi and N = M1M2 is the total number of
lattice points.

The free energy per site is given by

f/kBT = − ln 2 − 1

8π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln[C1C2C3 + S1S2S3

− S1 cos φ1 − S2 cos φ2 − S3 cos(φ1 + φ2)]. (14)

The critical conditions are given by [13, 14]

ω1 + ω2 + ω3 + ω4 = 2 max(ω1, ω2, ω3, ω4) (15)

where ω1 = exp(K1 + K2 + K3), ω2 = exp(K3 − K1 − K2), ω3 = exp(K2 − K3 − K1) and
ω4 = exp(K1 − K2 − K3).

Let us determine the zeros α(n1, n2) of the partition function polynomial in the variable
w1:

C2C3

√
1 + η2 + ηS2S3 − η cos φ1 − S2 cos φ2 − S3 cos(φ1 + φ2) = 0. (16)

Thus,

η(n1, n2) = (α−1 − α)/2 =
−A2 ±

√
A2

2 − A1A3

A1
≡ reiθ (17)

where

A1 = C2
2C

2
3 − (S2S3 − cos φ1)

2 (18)

A2 = (S2S3 − cos φ1)[S2 cos φ2 + S3 cos(φ1 + φ2)] (19)

A3 = C2
2C

2
3 − [S2 cos φ2 + S3 cos(φ1 + φ2)]

2 (20)

r =
√

A3

A1
cos θ = − A2

rA1
. (21)

Here wi = exp(−2Ki).
Since equation (17) contains two variables φ1 and φ2, we see that the zeros are located in

areas, as shown in figure 2. Here S2 = 2 and S3 = 3. The zero distribution approaches the real
axis, givingS1c = −1 andS1c = −7, which correspond to an antiferromagnetic phase transition
of the antiferromagnetic Ising model with |J1|:J2:J3 = ln(1+

√
2): ln(2+

√
5): ln(3+

√
10), J1 <

0, J2 > 0, J3 > 0, with Tc = 2J2/[kB ln(2 +
√

5)], and an antiferromagnetic phase transition
of the antiferromagnetic Ising model with |J1|:J2:J3 = ln(7 +

√
50): ln(2 +

√
5): ln(3 +

√
10),

J1 < 0, J2 > 0, J3 > 0, with Tc = 2J2/[kB ln(2 +
√

5)], respectively.
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Figure 2. The triangular-lattice zeros are distributed in the shaded region in the η-plane. Here
S2 = 2 and S3 = 2.

The free energy per site may be expressed as

f/kBT = D − 1

8π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln[sinh2 2K1 − 2r sinh 2K1 cos θ + r2] (22)

where

D = − ln 2 − 1

8π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln{A1[C1C2C3 − S1S2S3

+ S1 cos φ1 + S2 cos φ2 + S3 cos(φ1 + φ2)]
−1}. (23)

In the following, without loss of generality, we let |J1| > |J2| > |J3|.

3.1. J1 > 0, J2 > 0

φ1 = φ2 = 0 corresponds to a critical point. Expanding the integrand in equation (22) around
φ1 = φ2 = 0 and retaining the largest terms, we obtain the singular part of the free energy:

fs ∼
∫ φ10

0

∫ φ20

0
dφ1 dφ2 ln{[S1(S2 + S3) + S2S3 − 1]2 + !(φ1, φ2)}

∼
∫ θ0

−θ0

|θ | ln[S1(S2 + S3) + S2S3 − 1 + iθ ] dθ (24)

where φ10 and φ20 are small numbers and

!(φ1, φ2) = (S1 + S2 + S3 − S1S2S3)[(S1 + S3)φ
2
1 + (S2 + S3)φ

2
2 + 2S3φ1φ2]. (25)

As T → Tc, we have [S1(S2 + S3) + S2S3 − 1] ∼ t and hence fs ∼ t2 ln |t |. We obtain a
similar conclusion with X = η(S2 + S3)/(1 − S2S3).

3.2. J1 < 0, J2 < 0

φ1 = φ2 = π corresponds to a critical point. Following the same procedure, we obtain

fs ∼
∫ φ10

−φ10

∫ φ20

−φ20

dφ1 dφ2 ln{[−S1(−S2 + S3) − S2S3 − 1]2 + !(φ1, φ2)}

∼
∫ θ0

−θ0

|θ | ln[−S1(−S2 + S3) − S2S3 − 1 + iθ)} dθ (26)
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where φ10 and φ20 are small numbers and

!(φ1, φ2) = (−S1 − S2 + S3 − S1S2S3)[(−S1 + S3)φ
2
1 + (−S2 + S3)φ

2
2 + 2S3φ1φ2]. (27)

We obtain a similar conclusion with X = η(S2 − S3)/(1 + S2S3).

3.3. J1 > 0, J2 < 0

φ1 = 0 and φ2 = π corresponds to a critical point. Following the same procedure, we obtain

fs ∼
∫ φ10

0

∫ φ20

−φ20

dφ1 dφ2 ln{[S1(−S2 − S3) + S2S3 − 1]2 + !(φ1, φ2)}

∼
∫ θ0

−θ0

|θ | ln[S1(−S2 − S3) + S2S3 − 1 + iθ ] dθ (28)

where φ10 and φ20 are small numbers and

!(φ1, φ2) = (S1 − S2 − S3 − S1S2S3)[(S1 − S3)φ
2
1 + (−S2 − S3)φ

2
2 − 2S3φ1φ2]. (29)

We obtain a similar conclusion with X = −η(S2 + S3)/(1 − S2S3).

3.4. J1 < 0, J2 > 0

φ1 = π and φ2 = 0 correspond to a critical point. Following the same procedure, we obtain

fs ∼
∫ φ10

−φ10

∫ φ20

0
dφ1 dφ2 ln{[−S1(S2 − S3) − S2S3 − 1]2 + !(φ1, φ2)}

∼
∫ θ0

−θ0

|θ | ln[−S1(S2 − S3) − S2S3 − 1 + iθ ] dθ (30)

where φ10 and φ20 are small numbers and

!(φ1, φ2) = (−S1 + S2 − S3 − S1S2S3)[(−S1 − S3)φ
2
1 + (S2 − S3)φ

2
2 − 2S3φ1φ2]. (31)

We obtain a similar conclusion with X = −η(S2 − S3)/(1 + S2S3).

4. Honeycomb lattice

According to the honeycomb–triangular duality, there exists a relation between the partition
functions of the ferromagnetic Ising models on the triangular and honeycomb lattices [16]:

ZH
2N(L1, L2, L3) = ( 1

2 sinh 2K1 sinh 2K2 sinh 2K3)
−N/2ZT

N(K1,K2,K3) (32)

where

tanh Ki = exp(−2Li) i = 1, 2, 3. (33)

Here Li = Ji/kBT . Equation (33) implies that sinh 2Ki sinh 2Li = 1.
Substituting equation (13) into (32) gives

(ZH
2N)2 = 2M1M2

M1∏
n1=1

M2∏
n2=1

[C1C2C3 + 1 − S2S3 cos φ1 − S3S1 cos φ2 − S1S2 cos(φ1 + φ2)]

(34)

where Ci = cosh 2Li , Si = sinh 2Li , φi = 2πni/Mi and N = M1M2.
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Figure 3. The honeycomb-lattice zeros are distributed in the shaded areas in the η-plane. Here
S2 = 3 and S3 = 2. The real zeros η = ±1/7 correspond to pseudo-critical points.

The free energy per site is given by

f/kBT = −1

4
ln 2 − 1

16π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln[C1C2C3 + 1 − S2S3 cos φ1

− S3S1 cos φ2 − S1S2 cos(φ1 + φ2)]. (35)

Equations (34) and (35) are also valid for the antiferromagnetic cases.
The critical conditions are ζ1ζ2ζ3 − ζ1ζ2 − ζ2ζ3 − ζ3ζ1 − ζ1 − ζ2 − ζ3 + 1 = 0. Here

ζi = exp(−2|Li |) [15].
Let us determine the zeros α(n1, n2) of the partition function polynomial in the variable

w1:

C2C3

√
1 + η2 + 1 − S2S3 cos φ1 − S3η cos φ2 − ηS2 cos(φ1 + φ2) = 0. (36)

Thus,

η(n1, n2) = (α−1 − α)/2 =
−A2 ±

√
A2

2 − A1A3

A1
≡ reiθ (37)

where

A1 = C2
2C

2
3 − [S3 cos φ2 + S2 cos(φ1 + φ2)]

2 (38)

A2 = (1 − S2S3 cos φ1)[S3 cos φ2 + S2 cos(φ1 + φ2)] (39)

A3 = C2
2C

2
3 − (−1 + S2S3 cos φ1)

2 (40)

r =
√

A3

A1
cos θ = − A2

rA1
. (41)

Here wi = exp(−2Li).
Since equation (37) contains two variables φ1 and φ2, we see that the zeros are located in

areas, as shown in figure 3. Here S2 = 3 and S3 = 2. The zero distribution approaches the real
axis, giving S1c = ±1 and S1pc = ±1/7. S1c = ±1 correspond to a ferromagnetic phase tran-
sition of the ferromagnetic Ising model with J1:J2:J3 = ln(1 +

√
2): ln(3 +

√
10): ln(2 +

√
5),

J1 > 0, J2 > 0, J3 > 0, with Tc = 2J3/[kB ln(2+
√

5)], and an antiferromagnetic phase transi-
tion of the antiferromagnetic Ising model with |J1|:J2:J3 = ln(1+

√
2): ln(3+

√
10): ln(2+

√
5),
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J1 < 0, J2 > 0, J3 > 0, with Tc = 2J3/[kB ln(2 +
√

5)], respectively. S1pc = ±1/7
correspond to pseudo-critical points, which arise as a consequence of the negative sign in√

1 + η2 = ±|
√

1 + η2| exp(iε) in equation (36).
The free energy per site may be expressed as

f/kBT = D − 1

16π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln[sinh2 2L1 − 2r sinh L1 cos θ + r2] (42)

where

D = −1

4
ln 2 − 1

16π2

∫ 2π

0

∫ 2π

0
dφ1 dφ2 ln{A1[C1C2C3 − 1 + S2S3 cos φ1

+ S3S1 cos φ2 + S1S2 cos(φ1 + φ2)]
−1}. (43)

Let us consider the cases J1 > 0, J2 > 0, J3 > 0 or J1 < 0, J2 < 0, J3 < 0. φ1 = φ2 = 0
corresponds to a critical point. Expanding the integrand in equation (42) around φ1 = φ2 = 0
and retaining the largest terms, we obtain the singular part of the free energy:

fs ∼
∫ φ10

0

∫ φ20

0
dφ1 dφ2 ln{[S1(1 − S2S3) + S2 + S3]2 + !(φ1, φ2)}

∼
∫ θ0

−θ0

|θ | ln{[S1(1 − S2S3) + S2 + S3] + iθ} dθ (44)

where φ10 and φ20 are small numbers and

!(φ1, φ2) = (S1S2 + S2S3 + S3S1 − 1)[S1S2(φ1 + φ2)
2 + S2S3φ

2
1 + S3S1φ

2
2 ]. (45)

As T → Tc, we have [S1(1 − S2S3) + S2 + S3] ∼ t and hence fs ∼ t2 ln |t |.
We obtain a similar conclusion with X = sgn(J1)η(|S2S3| − 1)/(|S2| + |S3|).

5. Conclusions

(1) In the anisotropic cases, the zeros are generally located in areas.
(2) Near the positive real axis, the zeros are located on the unit circle in the X-plane. Here X

is given by

(i) Square: X = η sgn(J1) sinh 2|K2|
(ii) Triangular (|J1| > |J2| > |J3|):

X = η
sinh 2K2 + sinh 2K3

1 − sinh 2K2 sinh 2K3
(J1 > 0, J2 > 0)

X = −η
− sinh 2K2 + sinh 2K3

1 + sinh 2K2 sinh 2K3
(J1 < 0, J2 < 0)

X = η
− sinh 2K2 − sinh 2K3

1 − sinh 2K2 sinh 2K3
(J1 > 0, J2 < 0)

X = −η
sinh 2K2 − sinh 2K3

1 + sinh 2K2 sinh 2K3
(J1 < 0, J2 > 0).

(iii) Honeycomb:

X = sgn(J1)η
sinh 2|L2| sinh 2|L3| − 1

sinh 2|L2| + sinh 2|L3| .

(3) The logarithmic singularity arises as a consequence of the zero distribution near the positive
real axis, g(θ) ∼ |θ |.
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